Small Business Innovation Research/Small Business Tech Transfer

Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

ElectroChem proposes technology advances in its unique PEM IFF water electrolyzer design to meet the NASA requirement for an electrolyzer that will operate very efficiently both at low current densities and at high pressures. This SBIR effort will develop technical solutions to the draw-back of high pressure operation, namely hydrogen gas crossover losses, that is, an increased diffusion of hydrogen across the membrane which effectively decreases the efficiency. Two approaches to reducing gas permeation through the membrane at high pressure will be investigated: 1) The use of palladium thin films embedded in the membrane; and 2) The use of Nafion proton conductive polymer-clay nanocomposite blends. Two different bonding approaches and membrane configurations will be used for the first approach. Determining the best composition is the key for the second approach. Promising candidates will be determined by two tests: 1) hydrogen permeability tests; and 2) proton conduction measurements to assure that the effects of reducing hydrogen permeability will not affect electrochemical proton conduction. Finally, the most promising candidates will undergo their final Ph I proof of concept tests in a PEM IFF electrochemical cell. Phase I will lead to the Ph II development of a complete PEM IFF Electrolyzer System and delivery of a demonstration unit to NASA.

Primary U.S. Work Locations and Key Partners

Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Small Business Innovation Research/Small Business Tech Transfer

Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low

Current Densities, Phase I Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Lead Organization	NASA Center	Cleveland, Ohio
ElectroChem, Inc.	Supporting Organization	Industry Minority-Owned Business, Women- Owned Small Business (WOSB)	Woburn, Massachusetts

Primary U.S. Work Locations	
Massachusetts	Ohio

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Michael Pien

Technology Areas

Primary:

 TX14 Thermal Management Systems

 ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

